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~TMCT. This article describes a computer procedure for the 
examination and analysis of cerebral electrical activity (CEA). 
Changes in CEA generate random electrical activity and may 
indude transitory events~ such as burst episodes. As yet, there 
are no standard techniques for evaluating the statistical process 
of the CEA. This article proposes a computerized method of 
analyzing the stochastic character of CEA using a computer 
algorithm. Using a real-time wave-by-wave technique, the 
algorithm characterizes CEA by the frequency and amplitude 
of each CEA waveform. This algorithm produces digital 
packets of information that describe individual CEA wave- 
forms. 
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The ELECTROENCEPHALOGRAM (EEG) is a record o f  the 
CEREBRAL ELECTRICAL ACTIVITY (CEA) and is used to 
monitor  neurological events occurring near the surface 
o f  the brain [1]. Observed changes in CEA can provide 
important information for patient assessment and can 
alert clinicians to perform appropriate interventions, 
thus reducing the risk of  brain impairment. Unfor tu-  
nately, the complexities o f  operation and the difficulty 
of  interpreting the tracings have, in the past, prevented 
the consistent use o f  EEG devices in most operative 
procedures. 

The absence o f  recurring patterns in CEA waveforms 
considerably complicates their analysis. FOURIER ANALY- 
SIS techniques, which are commonly  used in many in- 
struments to transform CEA waveforms into more 
meaningful displays, do not provide the observer with 
ideal indications o f  patient status. 

This article describes an algorithm for the analysis of  
the STOCHASTIC phenomenon o f  CEA. This algorithm 
processes stochastic signals in a manner that allows 
rapid and accurate evaluation o f  brain status. The al- 
gori thm determines, on a wave-by-wave basis, the am- 
plitude and period o f  each CEA signal. Line frequency 
interference ARTIFACTS are rejected and electromyo- 
graphic interference and electrocautery artifacts are de- 
tected. In our application, the processed EEG information 
produced by this algorithm is then presented graphi- 
cally to the user in several easy to interpret formats [2]. 

PROBLEM 

CEA can be recorded by using small electrodes attached 
to the scalp. The variations in electrical potential at the 
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scalp are reflections of  the sum of synaptic potentials 
(potential differences) generated by neurological events. 
These signals vary in frequency and amplitude with 
most pathological changes in the subject's physiologic 
state. The process of  extracting diagnostic information 
from these electrical signals has traditionally been the 
specialty of  the trained electroencephalographer. These 
specialists recognize in the recorded EEG signal the 
waveforms and patterns that indicate patient status [3]. 

Since the 1930s, several methods have evolved for 
reducing the amount of  information presented in the 
EEG and simplifying the interpretation of  these com- 
plex waveforms. First, analog signal processing tech- 
niques were used to extract features that appeared to 
characterize the patient's state. A recurring approach 
was simply HtTERINC the EEG to remove all but a se- 
lected range of  frequencies. Zero crossing [4], relative 
power [5], amplitude envelope [6], and other techniques 
have also been used. As digital computers have become 
available, their computational power has been applied to 
assist in processing EEG data. 

A principal obstacle in analyzing EEG signals is con- 
tending with their random, nonperiodic nature. The 
filtering of  particular frequency ranges by analog tech- 
niques is giving way to equivalent digital analysis based 
on the fAST fOURIER TRANSFORM (FFT). Although the 
FFT may be used to obtain a spectral representation of 
the EEG, it is not optimal because of  the stochastic na- 
ture of  the EEG signal and the finite time of the FFT 
window (tPOCH) during which data are collected. At- 
tempting enhancement, by using techniques called win- 
dowing, averaging, smoothing, and other methods, 
alters the accuracy and resolution of  the resultant fre- 
quency spectrum [7]. 

Short-duration waves (waveform components) of rel- 
atively large amplitude that contain little energy are 
difficult to appreciate by using FFT methods. However, 
the presence of  these waves may be highly important 
[81. 

SOLUTION 

The algorithm described here was designed specifically 
for the analysis of  CEA signals. Invented by M. C. 
Demetrescu, a neurophysiologist at the University of  
California, Irvine, this algorithm, called the APERIODIC 
ANAtYSlS METHOD, responds to rapid changes in EEG 
signals that result from variations in the physiological 
state of  a subject [9]. 

The system is currently implemented with multiple 
patented methods on the Lifescan EEG monitor 
(Neurometrics, Inc., San Diego, CA). The Lifescan 
EEG monitor contains two independent subsystems. 

The front-end subsystem converts analog CEA signals 
into a set of digital parameters by means of the al- 
gorithm. The color graphics subsystem graphically dis- 
plays the processing result on a color cathode ray tube. 

The algorithm analyzes local extremes in unprocessed 
CEA waveforms. For each peak and valley, the voltage 
amplitude (height of  a detected CEA signal peak or val- 
ley) and the time of  occurrence are measured. The al- 
gorithm then extracts wave amplitude and frequency 
from these data and presents the information to the 
graphics subsystem. 

By this method, a wave is defined as a fluctuation in 
voltage that occurs between two local minima in volt- 
age. Thus, the algorithm begins to scan through time 
for a series of decreasing voltages. When an increase in 
voltage is noted relative to the previous time point, the 
previous time and voltage values are noted to represent 
a local minimum (valley vl). The algorithm then scans 
through time as long as voltage values increase. A de- 
crease in voltage is noted relative to the previous time 
point and the previous time and voltage values are noted 
to represent a local maximum peak (P). The algorithm 
once again scans through time, searching for the next 
local minimum (valley v2). This set of  voltage fluctua- 
tions describes a wave as illustrated in Figure 1. The 
amplitude of  the wave is defined as the average of  the 
difference in voltage between P and vl and the differ- 
ence in voltage between P and v2. Thus, 

amplitude (in microvolts) = [(Vp - Vv~) + (Vp - Vv2)]/2. 

The frequency of  the wave is defined as the inverse of 
the difference in time between the occurrence of local 
minima vl and v2. Thus, 

frequency (in hertz) = 1/(tv2 - tvi) Hz. 

To detect the simultaneous occurrence of  stow CEA 
waves (delta or theta waves) in the presence of  a high- 
frequency CEA wave, slow-wave and fast-wave detection 
procedures are executed inside the algorithm, The fast- 
wave method is the basic algorithm just described. The 
slow-wave method is similar, except that it detects the 
largest valleys and peaks between zero voltage cross- 
ings, Figure 2 shows how the positive peaks and nega- 
tive valleys are defined. 

In addition to detecting and characterizing CEA 
waves, the algorithm contains several artifact detection 
and rejection routines. These routines detect the most 
common kinds of  CEA artifacts in the operating room: 
artifacts harmonically related to the power line fre- 
quency, those caused by electromyography, and those 
with large amplitudes, as compared with the amplitudes 
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Fig 1. Fast-wave definition. P = peak; v = valley. 
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Fig 2. Stow-wave definition. P = peak; v = valley. 

on a normal EEG. The method of  wave analysis allows 
detection of  artifact noise, such as muscle tremor, out- 
side the CEA frequency band because of  the high sam- 
pling rate required by this type o f  algorithm. 

DETAILED DESCRIPTION 

The algorithm samples EEG signals and passes the re- 
sultant digital data through a series of  subroutines. Fun- 
damental tasks include: removal of  60-Hz noise, DC 
offset adjustment, slow-wave and fast-wave detection, 
and artifact detection and rejection. 

The hardware incorporates an eight-bit analog-to- 
digital converter for each EEG channel. Each channel 
samples the signal 960 times per second in phase with 
the AC power source. 

The first processing step is removal of  60-Hz noise. 
Because the analog-to-digital sampling system is VttAS~ 
LOCKED to the 60 Hz of  the incoming AC power, 60-Hz 
line interference is removed from the acquired data. 
This is done by storing these data in a 16-element RING 

BUrrER and producing the filtered data point as each 
point is stored. 

The filtered data are next sent through a nominal 30- 
Hz low-pass digital filter. This filtering procedure is a 
smoothing process using the MOVING BLOCK AVERAGING 
technique. 

The resulting digital values are then passed on to the 
fast-wave and slow-wave detection procedures. Each 
detection procedure is performed independently o f  the 
other and is responsible for building an information data 
packet that is sent to the graphics subsystem. The fast- 
wave routine detects signals from 8.0 Hz to 29.9 Hz. 
The slow-wave routine detects signals from 0.5 Hz to 
7.9 Hz. Before the digital image is sent through the 
slow-wave routine, it is passed through a nominal 10- 
Hz filter. This filter routine is similar to that for the 
nominal 30-Hz filter. 

Figure 3 shows the flow of  the algorithm. Figure 4 
shows the effects o f  the nominal 30-Hz and nominal 10- 
Hz filters. 

Information packets are sent to the graphics display 
subsystem each time a wave is detected. I fa  wave detec- 
tion takes place on the boundary of  a screen update, the 
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Fig 3. Aperiodic algorithm fow.  EEG = electroencephalogram; 
A D C  = analog-to-digital converter. 
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Fig 4. Plots of amplitude response (in decibels) versus frequency 
(in Hertz)for (a) the two-pass 30-Hz filter and (b) the two-pass 
30-Hz filter fotlowed by the two-pass 8-Hz filter. I f  we assume 
the input signal frequency content is flat over the frequency range 
plotted, the amplitudes in the filter outputs will be as shown. 

information is placed into the later update. Packets for 
fast waves, slow waves, or fast and slow waves com- 
bined, can be sent to the graphics subsystem in one 
transmission. Each transmission includes the following 
information: hemisphere identification (left or right), 
period of  wave (33 to 2,000 ms), peak-to-peak am- 
plitude of  the wave (1 to 400 IxV), wave status (type of  
artifact, i f  any), and scalp-electrode impedance. 

The amplitude and frequency information is dis- 
played on a color cathode ray tube. By isometric projec- 
tion, three dimensions are represented on the two- 
dimensional screen. A vertical colored vector is drawn 

on the cathode ray tube at a calculated location. The 
graphics subsystem determines, by frequency, where 
the vector is placed along the X axis of  the display. The 
color o f  the vector is also determined by this X axis 
location, The graphics subsystem determines, by am- 
plitude and user-selected scaling options, the vertical 
axis, Y, to which the vector will be drawn. Time is 
referenced on the Z axis, thus defining a three- 
dimensional reference system. 

DISCUSSION 

Changes in CEA occur quickly and may warn of  
impending disaster early enough to allow therapeutic 
intervention [10]. To detect events associated with 
ischemia or hypoxia, low-voltage activity must be 
monitored. For conditions such as seizures or responses 
to pain, rapid changes in activity must also be moni- 
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tored. Frequency-amplitude analyses are well suited to 
these needs [11]. 

The algorithm provides a method for detecting rapid 
changes in CEA waveforms and is sensitive to small 
changes at frequencies f rom 0.5 Hz to 30 Hz. As with 
any algorithmic transformation, this approach has cer- 
tain characteristics that bear upon its applicability to 
CEA processing. The technique can detect two fre- 
quency components  simultaneously. Unlike Fourier 
analysis, which yields an estimate integrated over a time 
interval (usually 2 seconds or more), this algorithm 
presents amplitude and frequency on a wave-by-wave 
basis. Thus, events such as burst suppression can be 
easily detected. This wave-by-wave method allows de- 
tection o f  low-voltage, high-frequency CEA wave- 
forms that can accompany brain hypoxia or ischemia. 

PSEUDO CODE DESCRIPTION 
OF THE APERIODIC ALGORITHM 

The following description includes only the high-level 
pseudo code o f  the wave detection system; support pro- 
cedures and ancillary functions o f  the front-end subsys- 
tem (i.e., continuous electrode impedance checking and 
artifact detection and rejection) have been omitted. 

The Lifescan EEG monitor  incorporates a dual- 
channel (left and right hemisphere) analog signal- 
processing front-end subsystem. Each channel consists 
o f  an independent set o f  filters, an analog-to-digital 
converter, and a microprocessor. The pseudo code 
describes the processing sequence o f  a single channel. 

The algorithm implements a number  o f  digital signal 
filters to perform the various signal processing tasks. 
The front-end subsystem has additional hardware band- 
pass filters to suppress frequencies below 0.3 Hz and 
above 120 Hz. 

All computations are performed as signed integer 
arithmetic. 

Items in the main procedure included for clarity but 
not further elaborated as pseudo code procedures are 
noted as "(not  expanded)."  

BEGIN main routine 

WHILE (1 = 1) 

Wait and service real-time 
interrupt 

60-Hz notch filter 

Detect high-frequency ar- 
tifacts 

30-Hz low-pass filter 

Detect fast-wave subroutine 

(remove 60-Hz noise) 

(not expanded) 

(pass EEG below 30 Hz) 

10-Hz low-pass filter 

Detect slow wave 

Detect multiple artifact 

EEG data to graphics sub- 
system 

ENDWHILE 

END main routine; 

BEGIN real-time interrupt ser- 
vice routine 

READ A-to-D converter 
(ADC) 

ISSUE start pulse to ADC 

END real-time interrupt service 
routine 

BEGIN 60-Hz filter subroutine 

IFk = 15 

k = 0  

ELSE 

k = k + l  

ENDIF 

60-Hz offset [k] = (60-Hz 
offset [k]* 256 + acquired 
ADC value) / 256 

Filtered voltage = acquired 
ADC value - 60-Hz offset [k] 

END 60-Hz filter subroutine 

BEGIN 30-Hz filter subroutine 

FOR i = 1 to 2 

IFk = 7 

k = 0  

ELSE 

k = k + l  

(pass EEG below 10 Hz) 

(not expanded) 

(not expanded) 

(loop forever, invoking 
subroutines) 

(interrupts occur 960 
times per second, in 
phase with AC power 
line) 

(acquire the digitized 
EEG signal) 

(start the next ADC 
conversion) 

(remove 60-Hz noise 
and DC offset from ac- 
quired EEG signal) 

(16-dement array; each 
element is 1/16 of one 
cycle of 60 Hz) 

(twice through the loop 
is equivalent to a hard- 
ware two-pole filter) 
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ENDIF 

30-Hz smoothing array [k] 
= input voltage 

Output voltage = AVER- 
AGE (30-Hz smoothing ar- 
ray [k from 0 to 7]) 

N E X T  i; 

END 30-Hz filter subroutine 

(two 8-point smooth- 
ings have 3 dB cutoff at 
30 Hz) 

(form the moving block 
average) 

Amplitude = (height 
of  first valley to peak 
+ height of  second 
valley to peak) / 2 

ENDIF; 

ENDIF; 

ENDIF; 

ENDIF; 

END fast-wave detection subroutine 

BEGIN 10-Hz filter subroutine 

F O R i  = 1 t o 2 ;  

IF k = 23 

k = 0  

ELSE 

k = k + l  

ENDIF 

10-Hz smoothing array [k] 
= input voltage 

Output voltage = AVER- 
AGE (10-Hz smoothing ar- 
ray [k from 0 to 23]) 

NEXT i; 

END 10-Hz filter subroutine 

BEGIN fast-wave detection sub- 
routine 

IF a valley is detected from the 
filtered voltage 

IF a peak was previously de- 
tected before this valley 

IF a valley was previously 
detected before the peak 

IF time between valleys 
is greater than or equal 
to 33 ins A N D  less 
than 125 ms 

RESET all fast peak 
detection flags 

Frequency of  fast 
wave = i / time be- 
tween valleys 

(twice through the loop 
is equivalent to a hard- 
ware two-pole filter) 

(two 24-point smooth- 
ings have 3 dB cutoff at 
9 Hz) 

(form the moving block 
average) 

(find a valley) 

(found positive peak) 

(valley-peak-valley im- 
plies an EEG wave is 
detected) 

(8.0 Hz to 29.9 Hz) 

BEGIN slow-wave detection 
subroutine 

1F the filtered voltage has 
crossed 0 V going positive 

IF the filtered voltage is less 
than the previous maximum 
reading 

Most positive peak = 
previous maximum read- 
ing 

SET most positive peak 
detected flags 

ELSE 

Previous maximum read- 
ing = filtered voltage 

ENDIF 

ELSE 

IF filtered voltage is greater 
than previous minimum 
reading 

Most negative peak = 
previous minimum read- 
ing 

Set found valley flags 

ELSE 

Previous minimum read- 
ing = filtered voltage 

ENDIF 

ENDIF 

IF found valley 

IF a positive peak was de- 
tected prior to this valley 

(detect positive peaks) 

(detect negative valleys) 

(if valley has been de- 
tected, start processing 
the wave detection using 
the same method as for 
fast waves) 
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IF a valley was detected 
prior to this positive peak 

(a complete slow wave 
is detected: valley-peak- 
valley) 

IF time between valleys 
is greater than or equal 
to 125 ms AND less 
than or equal to 2,000 
ms 

Reset all slow peak 
detection flags 

Frequency of slow 
wave = 1 / time be- 
tween valleys 

Amplitude = (height 
of first valley to posi- 
tive peak + height of 
second valley to posi- 
tive peak)/2 

ENDIF 

ENDIF 

ENDIF 

ENDIF 

END slow-wave detection routine 

W R I  

APERIODIC Waveforms not characterized by consistent 
periods. 

APERIODIC ANALYSIS METHOD A patented method o f  
analysis, used in the Neurometrics Lifescan electroen- 
cephalographic monitor ,  that takes into account the 
peaks and valleys o f  the electroencephalographic sig- 
nals. 

ARTIFACTS Components  o f  the electrical signals de- 
tected over the skull that are not generated by nervous 
system activity. Example: amplifier distortion caused 
by overvoltage (greater than 400 taV), by 60-Hz activity 
f rom the power  line, by muscle movement ,  or by inter- 
ference from other equipment. 

Cra~EBRAL ELECTRICAL ACTIVrrY (CEA) The electrical 
potential difference measured between two electrodes 
placed on the skull and resulting from the electrical ac- 
tivity of  underlying nervous tissue. 

ELECTROENCEPHALOGRAM (EEG) Term originally mean- 
ing the strip chart recording o f  CEREBRAL ELECTRICAL 
ACTIWTY but now often used in the medical literature to 
refer to the cerebral electrical activity itself. 

EPOCH The time period over which the Fourier trans- 
form o f  the CEREBRAL ELECTRICAL ACTIVITY is calculated 
(typically 2 seconds). 

FILTER A hardware device or software routine designed 
to pass signals o f  selected frequencies while rejecting 
others. 

FAST FOURIER TRANSFORM (FFT) An efficient means o f  
digitally computing the Fourier transform o f  a signal. 

FOURIER ANALYSIS A technique for calculating the am- 
plitude of  a sinusoid. Any waveform can be represented 
as the sum of  a set ofsinusoidatly varying waveforms o f  
harmonically related frequencies. Fourier transforma- 
tion o f  a t ime-varying waveform results in a representa- 
tion that varies with frequency [12,13]. A true Fourier 
transform includes the relative phase of  each component  
frequency. However ,  phase information is rarely pro- 
vided in ELECTROENCEPHALOGRAM analysis. 

MOVING BLOCK AVERAGING Averaging o f  data over a 
specified interval. Each data point is given the same 
weight in the average. 

PHASE LOCKED The state whereby the analog-to-digital 
sampling rate is synchronous with the line frequency. 
Example: sampling 960 times per second would yield 
exactly 16 samples for each cycle o f  a 60-Hz signal. 

RING BUFFER A buffer in which each new data point is 
stored in the next location. The layout is such that the 
next location ultimately becomes the first location. 

STOCHASTIC Involving a randomly determined se- 
quence o f  observations, each o f  which is considered as a 
sample o f  one element f rom a probability distribution. 
Stochastic variation implies randomness as opposed to a 
fixed rule or relation in passing f rom one observation to 
the next in order. 
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